Noble.AI Contributes to TensorFlow, Google’s Open-Source AI Library and the Most Popular Deep Learning Framework

Noble.AI, TensorFlow, Google's Open-Source AI Library, Deep Learning Framework
Noble.AI Contributes to TensorFlow_ Google's Open-Source AI Library and the Most Popular Deep Learning Framework

Noble.AI, whose artificial intelligence (AI) software is purpose-built for engineers, scientists, and researchers and enables them to innovate and make discoveries faster,  announced that it had completed contributions to TensorFlow, the world’s most popular open-source framework for deep learning created by Google.

Amazon Cancels re: Mars 2020 AI Summit Amid Coronavirus Outbreak

“Part of Noble’s mission is building AI that’s accessible to engineers, scientists and researchers, anytime and anywhere, without needing to learn or re-skill into computer science or AI theory,” said Dr. Matthew C. Levy, Founder, and CEO of Noble.AI. He continued, “The reason why we’re making this symbolic contribution open-source is so people have greater access to tools amenable to R&D problems.”

TensorFlow is an end-to-end open-source platform for machine learning originally developed by the Google Brain team. Today it is used by more than 60,000 GitHub developers and has achieved more than 140,000 stars and 80,000 forks of the codebase.

Why an AI Behavior Forensic Expert Needs to be Integral to the Enterprise

Noble.AI’s specific contribution helps to augment the “sparse matrix” capabilities of TensorFlow. Often, matrices represent mathematical operations that need to be performed on input data, such as in calculating the temporal derivative of time-series data.  In many common physics and R&D scenarios, these matrices can be sparsely populated such that a tiny fraction, often less than one percent, of all elements in the matrix are non-zero. In this setting, storing the entire matrix in a computer’s memory is cumbersome and often impossible together at the R&D industrial scale.  In these cases, it often becomes advantageous to use sparse matrix operations.

Previous articleMulti-Lingual Support from the Global MediXchange of Combating Covid-19 (GMCC) programme to Further Enable Sharing among Medical Personnel Worldwide
Next articleInland Cellular and Trilogy Networks Partner for the Rural Cloud Initiative